石墨烯
在2015年石墨烯發(fā)現(xiàn)之前,
石墨烯既是最薄的材料,也是最強韌的材料,斷裂強度比最好的鋼材還要高200倍。同時它又有很好的彈性,拉伸幅度能達到自身尺寸的20%。它是目前自然界最薄、強度最高的材料,如果用一塊面積1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的貓。
石墨烯目前最有潛力的應用是成為
硅的替代品,制造超微型晶體管,用來生產未來的超級計算機。用石墨烯取代硅,計算機處理器的運行速度將會快數(shù)百倍。
另外,石墨烯幾乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的氣體原子(氫原子)也無法穿透。這些特征使得它非常適合作為透明電子產品的原料,如透明的觸摸顯示屏、發(fā)光板和
太陽能電池板。
作為目前發(fā)現(xiàn)的最薄、強度最大、導電導熱性能最強的一種新型納米材料,石墨烯被稱為“黑金”,是“新材料之王”,科學家甚至預言石墨烯將“徹底改變21世紀”。極有可能掀起一場席卷全球的顛覆性新技術新產業(yè)革命。
實際上石墨烯本來就存在于自然界,只是難以剝離出單層結構。石墨烯一層層疊起來就是石墨,厚1毫米的石墨大約包含300萬層石墨烯。鉛筆在紙上輕輕劃過,留下的痕跡就可能是幾層甚至僅僅一層石墨烯。
石墨烯在實驗室中是在2004年,當時,英國
曼徹斯特大學的兩位科學家安德烈·杰姆和克斯特亞·諾沃消洛夫發(fā)現(xiàn)他們能用一種非常簡單的方法得到越來越薄的石墨薄片。他們從
高定向熱解石墨中剝離出石墨片,然后將薄片的兩面粘在一種特殊的膠帶上,撕開膠帶,就能把
石墨片一分為二。不斷地這樣操作,于是薄片越來越薄,最后,他們得到了僅由一層碳原子構成的薄片,這就是石墨烯。這以后,制備石墨烯的新方法層出不窮,經過5年的發(fā)展,人們發(fā)現(xiàn),將石墨烯帶入工業(yè)化生產的領域已為時不遠了。因此,在隨后三年內,
安德烈·蓋姆和
康斯坦丁·諾沃肖洛夫在單層和雙層石墨烯體系中分別發(fā)現(xiàn)了整數(shù)量子霍爾效應及常溫條件下的量子霍爾效應,他們也因此獲得2010年度
諾貝爾物理學獎。
在發(fā)現(xiàn)石墨烯以前,大多數(shù)物理學家認為,熱力學漲落不允許任何二維晶體在有限溫度下存在。所以,它的發(fā)現(xiàn)立即震撼了凝聚體物理學學術界。雖然理論和實驗界都認為完美的二維結構無法在非絕對零度穩(wěn)定存在,但是單層石墨烯在實驗中被制備出來。
制備石墨烯常見的方法為機械剝離法、氧化還原法、SiC外延生長法和化學
氣相沉積法(CVD)。
機械剝離法是利用物體與石墨烯之間的摩擦和相對運動,得到石墨烯薄層材料的方法。這種方法操作簡單,得到的石墨烯通常保持著完整的晶體結構,但是得到的片層小,生產效率低。
氧化還原法是通過將石墨氧化,增大石墨層之間的間距,再通過物理方法將其分離,最后通過化學法還原,得到石墨烯的方法。這種方法操作簡單,產量高,但是產品質量較低。
SiC外延法是通過在超高真空的高溫環(huán)境下,使硅原子升華脫離材料,剩下的C原子通過自組形式重構,從而得到基于SiC襯底的石墨烯。這種方法可以獲得高質量的石墨烯,但是這種方法對設備要求較高。
CVD是目前最有可能實現(xiàn)工業(yè)化制備高質量、大面積石墨烯的方法。這種方法制備的石墨烯具有面積大和質量高的特點,但現(xiàn)階段成本較高,工藝條件還需進一步完善。
單層石墨烯
單層石墨烯(Graphene):指由一層以苯環(huán)結構(即六角形蜂巢結構)周期性緊密堆積的碳原子構成的一種二維碳材料。
雙層石墨烯
雙層石墨烯(Bilayer or double-layer graphene):指由兩層以苯環(huán)結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛構成的一種二維碳材料。
少層石墨烯
少層石墨烯(Few-layer):指由3-10層以苯環(huán)結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛構成的一種二維碳材料。
多層或厚層石墨烯
多層或厚層石墨烯(multi-layer graphene):指厚度在10層以上10nm以下苯環(huán)結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛構成的一種二維碳材料。